miércoles, 24 de septiembre de 2008

PERMUTACIONES

Permutación

En matemáticas, dado un conjunto finito con todos sus elementos diferentes, llamamos permutación a cada una de las posibles ordenaciones de los elementos de dicho conjunto.

Por ejemplo, en el conjunto {1,2,3}, cada ordenación posible de sus elementos, sin repetirlos, es una permutación. Existe un total de 6 permutaciones para estos elementos: "1,2,3", "1,3,2", "2,1,3", "2,3,1", "3,1,2" y "3,2,1".

La noción de permutación suele aparecer en dos contextos:



Definición alternativa

La permutación antes citada "1,3,2" puede verse como la imagen de una aplicación σ que lleva la lista inicial de objetos (1, 2, 3) en la lista de objetos reordenados (1, 3, 2). De este modo σ(1)=1, σ(2)=3 y σ(3)=2. También podemos definir a la permutación como la propia aplicación σ.

Así, formalmente, una permutación de un conjunto X es una biyección de X en sí mismo.

Aunque esta segunda definición generaliza a la primera al admitir conjuntos infinitos, el término permutación se usa principalmente para un conjunto finito X, y así lo haremos en el resto del artículo.

COMENTARIO: es cualquier subconjunto ordenado de un conjunto universal es decir el numero de elementos a los diferentes grupos que pueden hacerse tomandolos todos cada ves.